Telegram Group & Telegram Channel
Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/963
Create:
Last Update:

Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/963

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека собеса по Data Science | вопросы с собеседований from ua


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA